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1. — Introduction.

These notes are the written version of lectures delivered at the University
of Pennsylvania during March 1972. The lectures were one section of a graduate
course on the theory of operator algebras attended by students well versed in
the basics of the theory. It is a pleasure to record my gratitude to these students
for their lively and stimulating participation: M. DUPRE, 1. EBY, W. GREEN,
D. LArsoN, M. LANDSTAD, R. McGoOVERN, C. SKAU, G. STAMATOPOULOS and
S. Tsur. Special thanks are due to D. LaisoN for noticing that Lemma 2°3
as I presented it could be modified to apply to the noncommutative case. This
allowed for a subtantial simplification in the presentation.

The guiding question is that of when two von Neumann algebras are uni-
tarily equivalent. In essence the answer is contained in Theorem 3'7 (the
unitary implementation theorem). With its aid and the techniques of restric-
ting to invariant subspaces and tensoring, the question reduces completely
to one of algebraic isomorphism. The main tool needed (as we present it) in
making this reduction is a theory of normal states indicating when and how
they may be represented as vector states.

2. — Vector state decomposition of completely additive states.

In this Section it is shown (Theorem 2°7) that completely additive states
of von Neumann algebras are sums (possibly infinite) of positive vector func-
tionals. The special feature of the argument is that it remains within the frame-
work of the theory of operator algebras (that is, without a serious excursion
into Banach-space theory).

2'1. Definition. — A completely additive (c.a.) state of a von Neumann
algebra is a state w of # such that w(z E,,) = > w(B,) for each orthogonal
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family {E,} of projections in #. A carrier (support) for w is a projection E such
that I — E= > E, and {E,} is an orthogonal family of projections in # max-

imal with respect to the property that w(E,) = 0 for all a.
With the notation of the preceding definition, w(l — E)= w(Z E,,) =

= > w(H,)=0 and, since I — E>0 and o is a state, 0 =w(T(I— E))=

=w((I—E)T)foreach Tin#. If A >0, Ae % and EAE = A, then w(4) > 0.
In this case, 4> AFE, for some nonzero spectral projection E, of 4 and some
positive A. Thus Ey<F; and 0 <w(B,) <A 'w(d) by maximality of {E,}.
We could argue to show that there is only one carrier for w, at this point; but
it is not needed and will be clear from later results.

22, Lemma. — If w is a c.a. state of the von Neumann algebra £, there is
a countable orthogonal family of projections {¥,} and vectors {z,} such that
W5, <0, |2, n=1,2,..., Where (3 E,,) = S w(E,) = 1.

Proof. Let F be a carrier for w. If we can find {E,} and {x.}, as in the
statement of the Lemma, but for FZF and o|F#F, then, with z,— Fz.,
Wy, <, |2 (for w, (4) = o(E,FAFE,) <(FAFz,,s,)=w, (A) when A is a
positive operator in #). Thus we may assume that w(4) > 0 for each positive
A in A.

Note, next, that if E is a projection in # and « is a vector such that |Exz|=1,
then there is a nonzero subprojection E, of E in # such that w, <w,,|#. To
see this, let us observe, first, that if w(E')<(E’#, z) for each subprojection E’
in Z of a projection E, then w,< wg|#%. In this case, with A a positive operator
in #, we can approximate FAFE as closely as we wish, in norm, by linear com-

binations > A, F,, where 1,>0 and {F;} are (mutually orthogonal spectral)
=1 n n

projections (for EAE) in # contained in E. Then Y 4, 0(F;)<Y A;(F;x, x) =

=1 i=1

- (( S 1)), w); so that w(BAE)<w, (EAE).
=1

Thus either we may choose E as F, or there is some subprojection ¥, of E
in # such that w(F,) > (F,x, z). Let {I',} be a maximal orthogonal family
of such projections. Then w(z F,,) =Y w(F)> (Fx,x)= ((Z F,,) x, m);

b b b b,

so that F, 0 (and, hence, w(F,)+ 0), where E,— E— Y F,. (If, on the
contrary, w(E,)= 0, then E,= 0 and b

15 w(B) = w(gp,,) =3 o(F,) > ((;1«’,,) @, w) — (Bw, w) = |Boj*=1 )

b

By maximality, w(E')<(E'#, z) for each subprojection E' of E, in #. From
the earlier argument w, <wg|2#.
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Next, let {E,} be an orthogonal family of projections in %# maximal with
respect to the property that there are vectors {z,} such that w, <w, |%. Since
S w(B,) = w(z E) <1 and w(E,) > 0 unless B, — 0, {£,} isa countable family,

and we relabel it as {E,}. If 0 ~I— > E,(= E), there is a unit vector z in

the range of E; and, from our earlier argument, there is a subprojection K,
of B in # such that 0 < w, <w,|%, where z,= E ;2. But E, is orthogonal
to each E, contradicting the maximality of {E,}. ThusI=> F, and Y o(E,)=1.

2'3. Lemma. — If w is a c.a. state of the von Neumann algebra % acting on
S, then w is weak-operator continuous on %,, the unit ball of £.

Proof. Let {E,} and {x,} be as in the preceding lemma. With ¢ > 0 "given,
find N such that w( > E,,) < e?/64. Let 4 be an operator in Z%,, the ball of ra-

n>N

dius 2 with center 0 in %, such that |Ax,| <e¢/4N, n=1,..., N. Then, writing
H for A*A,

@ A):< o) = o 3 E.) + o(E 3 5.) <

n=1l a>N
N 3 N
< Somm ) + o@io $E.) < o eB AR} +£ <
n=1 n>N n=1

N
3
<2 | Az, +5<e.
n=1

Thus w is strong-operator continuous at 0 on %,. Since translation by an
operator in %, is a strong-operator continuous mapping of %, into %,, w is
strong-operator continuous on %,. The closed half-planes in the plane of com-
plex numbers are convex and have complements which form a subbase for the
open sets. The inverse image of a closed half-plane intersects £, in a convex
set which is strong, hence, weak-operator closed. Its complement has inverse
image which intersects %, in a weak-operator open set. Thus w is weak-operator
continuous on %,.

2'4. Corollary. — If w is a c.a. state of the von Neumann algebra £, w, is
weak-operator continuous on #%; (hence w is a c.a. state when w(B*B)= 1).

2'5. Lemma. — If A — A is the direct sum of all representations of a von
Neumann algebra # engendered by c.a. states of %, then & is weak-operator
closed.

Proof. If 2 acts on #, w is a c.a. state of &, and z is a unit vector in #
such that w(4)= (4w, ) for all 4 in &, then w,(4) = (4Bw, Bzx). Thus 4 —
— (ABx, Br) is weak-operator continuous on %,. With {w,, ..., w,} a finite
set of c.a. states of # and =z,,.., z, the corresponding vectors in 5%,
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{ Y B;z;:B; in ,@} is dense in s#. Moreover,
j=1

A — (Z Zl_?,w,-, ZB,w,-) = Z(EB,--%, B;))

i=1 =1 i=1

is weak-operator continuous on %,. For each z in #, then, A4 — (4z, 2) is a
uniform limit of weak-operator continuous functions on %, and is weak-operator
continuous on %,. Thus A —> A is continuous from £, in its weak-operator
topology to %, in its weak-operator topology. But 2, is weak-operator compact;
so that &, is weak-operator compact (hence, closed). The Kaplansky density
theorem implies that % is weak-operator closed.

2'6. Corollary. — If w is a c.a. state of the von Neumann algebra # and ¢
the representation of # it engenders, then (%) is weak-operator closed.

Proof. If x is a vector in J# such that w(4)= (4, z), in the notation of
the preceding lemma, then A — AE’ is unitarilye quivalent to ¢, where E'
has range [#z]. But #E' is weak-operator closed.

2'7. Theorem. — If w is a c.a. state of a von Neumann algebra # acting on
the Hilbert space #,, there is a countable set of vectors {z,} in 5, such that
0=, (nd 3 o|:=1).

n=1 n=1

Proof. Let % and & be as in Lemma 2'5. Let {E;} be a maximal orthogonal
family of cyclic projections in #’ with orthogonal central carriers {Cz}. If
w, is the vector state of #Z corresponding to a unit eyclic vector for E; (under %)
and z, is a unit vector in s such that w,(4)= (zwa, x,) for all 4 in £, then
A —AE is unitarily equivalent to 4 —A4E,, where E, is the (cyclic) pro-
jection in %' with range [Zw,]. Thus, writing E for > E,, the isomorphism

A —AE' is unitarily equivalent to A —AE, where E'= Y E.. Note, for
this, that C, = ) Oy = I, by maxmality of {E,}. Hence C,,— I. From the

Comparison Theorem, there is a family of projections {E;.b.c} with sum I such
that {, )}, are all equivalent to a subprojection F., of K,. Let V., be a
partial isometry in %' with initial space E, ,  and final space F,,. If y is a unit
vector in J# such that w(4) = (4y, y) for all 4 in %, then at most a countable
family of V. E"My is nonzero. Denoting these as ¥,, ¥,,..., note that

ab.c " a

y.€ E'(#) and

Z (Zy"’ :'/") = Z (ZV;.b.cE;.b.c Y, V«:.b.c Eolx.b.c y) - Z (ZE_;.b,c y’ E;.b.c y) =

n a,b.c a.b.c

- (Z 3By ZE.',.b.cy) = (4y,y) = o(4) .

a.b.c a.b.c
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As A — AE' is unitarily equivalent to 4 —~ AE', there are vectors {»,} in
E'(#,) such that w(4) = 3 (4x,, x,) = X o, (A). Since 1 = o(I), Y [2.[*=1.

2'8. Corollary. ~ If w is a c.a. state of the von Neumann algebra £ acting
on the Hilbert space s#, there is an orthogonal family {y.} of vectors in s#
such that w= Y o, |Z and 3 |ly.[2=1.

Proof. From Theorem 27 there is a family {»,} of vectors such that
dw,|Z=w and Y |z,[*=1. Then T is a self-adjoint trace class operator
(positive, of trace 1), where T =Y |,|*E, and E, is the one-dimensional pro-
jection with y, in its range. It follows that

0(4) = 3 (AB,, 2,) = 3[@]? Tr (B, AB,) = 3 |2, ] Tr (B, 4) = Tr (T4).

If {y.} is an orthonormal basis of eigenvectors for T corresponding to the eigen-
values {a?} (with a,>0), then Ya?=1. With y,=a,y,

w(d) = Tr (TA)=Tr ((z aF,) A) =3 a:Tr(F,AF,)=3(4y,,v,) =Y o, (4),

where F', is the one-dimensional projection with y:, in its range. Thus w=
=> o, |R.

2'9. Definition. — The ultra-weak topology on a von Neumann algebra £
acting on a Hilbert space 5# is the weakest topology relative to which all fune-

tionals of the form > w, ,|%, with Y (|.|*+ [y.]?) < oo, are continuous.

n=1

Remarks. From Phillips’ theorem, each functional on # continuous in the

ultraweak topology has the form > w, , |#, with 3 ([.]*4 [|¥.]?) < oo (since
ne=l

these form a linear subspace of the dual of #). Note that

|13 0, ()] = | 3 (A0, 3 )| <3 1A 2l [yal < JAN(Z 124 19al*)E;

so that, under the hypothesis Y ([.]*+ [¥.]*) <oo, X o, ,(4) converges
(absolutely) and > w, , |# is in the norm-dual of #. "~

2°'10. Lemma. — An ultra-weakly continuous linear functional w on a
von Neumann algebra £ is weak-operator continuous on the unit ball £,, of #.

@® @

Proof. ¥rom the preceding remark, w= > w, ,|%#, where 3 (|lz.|>+

n=1 =1

k

+ ¥.]?) < co. Thus | — w,| 3> 0, where w,= ¥ w, , |%. As each w, is weak-
n=1

operator continuous on #,, the same is true of w.
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2'11. Definition. — A state w of a von Neumann algebra £ is said to be normal
when w(A4,)tw(4) for each monotone increasing net of operators (4,) in %
with least upper bound A.

2'12. Theorem. — The following conditions on a state w of a von Neumann
algebra £ acting on s# are equivalent:

a) o= w, |# and Y |y,|*=1, with {y,} an orthogonal family of vec-
n=1

tors in 7

b) w=73 w, | and 3 |&,|*=1;

n=1

¢) w is ultra-weakly continuous on Z;

d) w is weakly continuous on the unit ball of #;
e) w is strongly continuous on the unit ball of %;
f) © is normal on %;

g) w is a c.a. state of Z.

Proof. The implications a) —b) —¢) are immediate. Lemma 2'10 yields
¢) — d). Since the weak-operator topology is weaker than the strong-operator
topology, d)—¢) follows. If A,}A, the same is true for the (bounded) co-final
subnet of (4,) consisting of those 4, greater than or equal to a fixed 4, . As
this convergence is in the strong-operator topology w(4,) converges to
w(A) over this subnet, under the assumption of ¢). Thus w(4,)}w(4). If

E =3 E, for an orthogonal family {E,} of projections in %, then ( > Ea) is
einF
a monotone increasing net of projections in # indexed by finite subsets %

of the family {a}. Thus > w(E,)}w(E), under the assumption f); so that w(E) =

6 inF

= > w(E,). Hence f) —g). Finally, g) —a) is precisely the assertion of Co-
rollary 2°8.

3. — When normal states are vector states. The unitary implementation theorem.

The goal of this Section is Theorem 3'3, in the presence of a separating vector
each normal (c.a.) state is a vector state. With its aid, we prove the unitary
implementation theorem (Theorem 3'7). Further use of it results in the com-
parison theorem for pairs of jointly generated cyclic projections in a von Neu-
mann algebra and its commutant (Theorem 3'9).
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3'1. Lemma. — If # is a von Neumann algebra acting on the Hilbert space
# and =z, is a unit cyclic vector for £, then, for each vector 2, in s#, there are
operators, 7', S in # and a vector y, orthogonal to the null space of 7' such that
Ty,= x, and Sy, = 2,:

Proof. Assume |z] = 1. Since z, is cyclic for %, there are operators T,

-] n

in # such that ¥ T2, =2, and |T,u,| <4~ It H:=T14 Y 4*T, T,, then
n=0 k=0

(H?) is a monotonic increasing sequence of positive invertible operators in %;

and (H_.?) is a monotonic decreasing sequence of positive invertible operators

in #. Thus (H.?) is a bounded sequence of operators tending strongly to some

operator in # and H,* (= (H;%?!) tends strongly to an operator T in .
Note that

IIH,.%’|2= (H:wo’ @,) = ((I+ 2":4" T: Tk) Ty "Do) =

k=0

— (@ @)+ S Tum <1+ 34+ <3,

k=0 k=0

Since the ball of radius r is weakly compact in 5#, some subsequence of (H,x,),
say (H, w,), converges weakly to y, in #. We assert that Ty,=ux,. If ¢>0
and x is a vector in s#, there is a positive integer N such that, if n>> N and
n'>N, then |(H,*— T)xz|<e/6 and |(H, z,— ¥,, Tx)|<e/2. In this case,
with »' >N

_ & €
I(Hn' Loy Tw)_(Hn' oy Hnlr w)l = [(Hn’ To, T‘v)—(woa w)l <6 “Hm .%" <§ ’

so that |(yy, Tx) — (o, )| = |(Tyo — %o, ¥)] <& and Ty, = w, as asserted.
With m larger than »

0<H 4 T3 T, H} <H S 4+ 7; T,,) H<I.
k=0

Now H;'4" T T, H:' tends strongly to 4"TT, T,T as m tends to oo; so that
0<4"TT:T, T<I, and |T,T| <2 Thus > T,T converges, in norm, to an

=0

operator S in #. Since both T and S have the same effect on y, as they do on
its component orthogonal to the null space of T, we may assume ¥, is orthogonal

to that null space. As Tyy= 2y, SYo= 2 T Tyo= D T= 2.

n=0 n=0

3'2. Corollary. — If # is a von Neumann algebra acting on s#, I is the
projection in £’ with range [%#x,], where z, is a separating vector for %, then
E' < F', for each cyclic projection E’' in #'.
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Proof. Since z, is cyclic for #’, with z, a generating vector for the range of
E’, there are operators 7', 8’ in £’ and a vector y, orthogonal to the null space
of T such that T'y,= x, and S8'y,=2,. If M’ is the projection in £’ with
range [Zy,], then E' < M'; for [#z,] = [S' #y,] = [range S8' M']. But (S8’ M')~
~r(M' 8*)<M'. Similarly, F'< M', and F'~r(M' T'*). As y,c [range T'¥]
and M'y,= yo; r(M'T*)yo= 9. Thus M'<r(M'T'*); and F'> M’'. Hence
e

3'3. Theorem. — If o is a c.a. state of the von Neumann algebra £ acting
on #, and x, is a separating vector for %, then there is a vector y, in s#, such
that w = w%[%.

Proof. If # acting on S is the « universal normal » representation of %
(described in Lemma 2'5), there are vectors # and y in 5# such that w(4)=
= (dy, y) and o,(4) = (4w, z), for each A in #£. In addition, if F' is the pro-
jection in %' with range [#x], the mapping A, — Az extends to a unitary
transformation U of [Rxz,] onto F'(s#) such that UAU*—= AF’'. Since x, is
separating for %, x is separating for #; and E'< F’', where E'(#)= [Ry].
If V' is a partial isometry in &' such that V'*V'= E’ and V' V'*<F’, then
o= o, |#, where y,= U*V'y.

3'4. Definition. — The carrier (or, support) of a normal state of a von Neu-
mann algebra is the orthogonal complement of the union of all projections
annihilated by the state.

Remark A. If the support of w on #Z is E, then w(I — E)=0; for if 4 in
2 is positive and w(4) =0, then 0<w(4") = w(A" A <w(d™ ) w(d)t= 0.
Thus w(f(A4)) for each continuous function f on the spectrum of A such that
f(0) = 0. In particular w(A*)= 0; and, since w is normal, w annihilates the
range projection, F, of A. Conversely if w(F)= 0, then 0 <w(4d)= o(F4)<
<w(F)'w(A**= 0. Thus two normal states have the same carrier if and only
if they annmihilate the same positive operators. If w(M)= w(N)= 0, then
w(M + N)=0; so that » annihilates the range projection of M - N, that is,
w(MVN)=0. Since w is normal, o annihilates the union I — E of all pro-
jections on which it vanishes.

Remark B. The support of w,|# has range [#'z].

3'5. Lemma. — If Z is a von Neumann algebra acting on 5# and o is a normal
state of # with carrier F contained in the carrier of w,|%#, then v = w,|# with
y in [Z#'z].

Proof. The carrier F of w,|# has range [#%'z]. Writing %, for FZF acting
on F(s#) and w, for w|%,, we have w(d)= w,(FAF), since 0 = w(l— E)>
>w(l — F)>0. As zis cyclic for F(s#) under #'F, z is separating for FZF.
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Thus w,= w,|%,, for some y in F(#), and w(4d)= w(FAF)= (FAFy,y)=
= (Ay, y) for all 4 in Z#.

3'6. Lemma. — If the normal state w has the same support on the von Neu-
mann algebra # as the state w,|#, where 2z is a unit cyclic vector for £, then
w = w,/%# for some unit cyclic vector x.

Proof. From the preceding Lemma, w = w,|# for some unit vector y. Let
£’ be the projection (in #’) with range [#y]. The cyclic projection in # with
2 generating its range has the same central carrier as that in #' with z generating
its range. Since the latter projection is I and the former is the support of w,|%,
hence, of w and w,|#, E' has central carrier I. Let w,(AE') be (Az, ) for each 4
in # (noting that A — AFE’ is an isomorphism of £ onto ZE'). Then w, is
normal on ZE’, with the same support as w,|ZE’, for (Fz, z) = 0 if and only if
(Fy,y)= (FE'y,y) = 0. Thus wy= w,|%ZE" for some unit vector v in [Zy].
Since (Av, v) = (Az, 2z) for each 4 in %, the mapping Az — Av of #z onto #v
extends to a (partial) isometry V' of 5# onto [#v], with V' in #'. Now [Z%v]C
C[Zy], so that E'~ 1 in #'. Let W' be a partial isometry in £’ with initial
space [#y] and final space s#; and let x be W'y. Then [#x]=[ZW'y]=
= W'[#y] = +#, and (Az,z)= (AW'y, Wy)= (Ay, y) = w(4) for all 4 in A.

3'7. Theorem (Unitary Implementation Theorem). — If ¢ is a *-isomorphism
of the von Neumann algebra %,, with separating and cyclic vector z, onto the
von Neumann algebra %,, with unit separating and cyclic vector y, then there
is a unitary transformation U of the space 5#,, upon which #, acts, onto the
space #,, upon which £, acts, such that ¢(4)= UAU* for each 4 in %,.

Proof. Let w be the state w,op of #,. Since ¢ is a *-isomorphism of %,
onto #%,, ¢ carries an orthogonal family of projections in %, onto such a family
in #,. Moreover, ¢ and ¢! preserve order and, hence, the least wpper bound
(i.e. « sum ») of such a family. The complete additivity of w follows from that
of ¢ and w,|#,. Since x is a separating vector for #,, v = w,|#, for some unit
vector z in s#,. Since ¥ is separating for %,, w is separating for £,, so that
o and w,|%, have the same support (in %,). From the preceding Lemma we
can choose z so that [R,2]= [#,2]= 5#,. Thus ¢! is a cyclic representation
of #, as %, on #, with cyclic vector z such that w,o¢™'= w,|%,, and y is a
cyclic vector for %, on 5#,. Hence there is a unitary transformation U of 5,
onto s, such that @(4)= UAU-.

3'8. Lemma. — If w is a normal state of the von Neumann algebra £ acting
on s, and w has the same support as w,|#, then there is a unit vector # such
that [Zz] = [#2] and w = w.|Z.

Proof. Let E’ be the projection (in #') with range [#z], and define w, on
RE' by w,(AE') = w(4). Note that w, is well defined, for if AE'= 0, then
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(A* Az, z) = 0; so that w(A*A), and, hence, w(A), are 0. Since C, is the
central carrier of the projection ¥ (in #) with range [#' 2], and E is the support
of w,|# and w; we have that w(4)= w(AC,)= w,(4E'). As the mapping
AC, — AE' of #C, onto ZE' is an isomorphism, w, is a normal state of ZE'.
Moreover, w, has the same support as w,|ZE’, for if 0 = (FE'z, z)= (Fgz,z),
then w(F)= wy(FE')=0. As z is cyclic for E'(##) under ZF’, Lemma 36
applies, and there is a unit vector # in E'(#) such that w(4) = w,(4E') =
= (AE'x, x) = (Az, ), for all A in #Z, and [ZE'z]= [Zx]= E'(#) = [%=].

3'9. Theorem. — If Z is a von Neumann algebra acting on the Hilbert space
# and x, y are vectors in 5, then [#'z]S[#'y] if and only if [#x] S [Ry].

Proof. If we have proved that [Z#'x]~[Z#'y] entails [Zr]~ [Zy], and
[Z2 21< [#'y], then [# x]~ (% y,]<[Z#'y], where y,= Fy and F is the pro-
jection (in #) with range [#'y,]. Then, by assumption, [#z]~ [Zy,] = [ZFy]<
<[#y];so that [Zx] < [Zy]. On the other hand, if [#z] ~ [Ry], then, by sym-
metry, (%' x]~ % y], contrary to the assumption [Z z] < [#'y]. Thus [Z#z] <
< [#y].

It remains to establish that [#'x]~ [Z'y] entails [#x]~ [Zy]. Suppose V
in # is a partial isometry with initial space [#Z'x] and final space [#'y].
Then [Z'Vz]l= V[# z]= [#'y] and [#AVzx]C[Rx] = [ZV*Vr]C[#Vx]. Thus
[#Vx]= [#z]. Replacing x by Vz, we may assume that [Z'2]=[#'y]. In
this case w.|#Z and w,|# have the same carrier, and we can find 2 in [Zy]
such that w,|2= w.# with [#z]= [Zy]. The mapping Ax — Az extends to
a partial isometry in £’ with initial space [#Zx] and final space [#y]. Thus
(Zx]~[Ry] (in Z').

4. — A second approach to normal states.

Using the precise determination of extreme points on the unit ball of a
C*-algebra, a polar decomposition for normal linear functionals on a von Neu-
mann algebra is established. With its aid, the Sakai-Radon-Nikodym theorem
is proved. This is used to show that normal states are vector states in the pre-
sence of a separating vector.

4'1. Theorem. — The set of extreme points of the unit ball .o/, of a C*-algebra
&/ consists precisely of those partially isometric operators V in & such that
(I — F)/(I— E)=0, where E= V*V and F= VV*

Proof. Suppose, first, that V is an extreme point of =7;, and let &Z(V*V)
be the C*-subalgebra of ./ generated by V* V. Then the spectrum o(V*V)
of V*V is contained in [0,1]. If @ is a point of (0,1) and & is a continuous
function, small on a small neighborhood of a, vanishing outside that neigh-
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borhood, and nonzero at a, then |V*V(I 4+ (V*V))?|<1. Thus |V(I +
+ WV*V))| <1, and V=1 (V(I—l— RVEV))+ V(I — h(V* V))). Since V is
extreme on &7, V=V + Vi(V*V) and 0= VA(V*V)= V*VRh(V*V). Since
h(a) # 0, a¢o(V* V). Thus the spectrum of V*V contains, at most, 0 and 1;
so that V*V is a projection ¥ in.oZ. It follows that VV* is a projection F in.«/.

If A is an operator in the unit ball of (I — F)&/(I — E) and 2 is a unit vec-
tor, then 2=z} y where y = L2, = (I — E)z, and

IV £+ A)z|*= |Vy £ Az[*= [FVy £ (I — F) dz|*= |Vy|*+ |A=z|*<1.

Thus V4 Aess, As V=L (V+A+V—-4), V=V+4 and 4=0.
Hence (I — F)/(I — E) = (0).

Suppose U is a partially isometric operator in .o/ with initial projection E
and final projection ¥ such that (I — F)o/(I—E)=(0). If U=1(4+ B)
with A4, B in &/, then 1= (Uw, Uz)= } ((Az, Uxr) + (Bw, Uz)) if « is a unit
vector in the range of E. As (Az, Ux) and (Bz, Ux) lie in the unit disk in the
complex numbers, and 1 is an extreme point of that disk, 1 = (Ax, Ux) =
= (Bz, Uz). From the limit case of the Schwarz inequality Ax = Bx = Ux.
Thus AE = BE = U, and both A and B map the range of E isometrically
onto that of . We note that since both A and B have norm not exceeding 1,
this last implies that FA(I — E)= FB(I — E)=0. Otherwise, say, FA(l—
— E) 0. There is an y in the range of I — F such that FAy = z, for some unit
vector z in the range of F. There is a unit vector z in the range of E such that
Ax=2z. Then

1=z = |FAy[<[y] = a7;

xcosb 4 ya sin 0 is a unit vector u for each 0 in [0, 2xn]. But |FAul=
= |cos O+ asin 6] = (1 + a?)}, when tgf=a, and (1-+ a?)}>1.

Having noted that FA(I — E)= FB(I — E)=0, and given 0= (I —I')-
-A(I — B)= (I — F)B(I — E), we have A(I — E) = B(I — E) = 0, so that 4 =
= AF = U= BE = B. Thus U is an extreme point of .«,.

4'2. Theorem (Polar decomposition). — If # is a von Neumann algebra
on 5 and g is a linear functional weak-operator continuous on the unit ball
#, of #, then there is a partial isometry U in %, extreme on %, such that w
is a positive normal linear functional on %, where w(A4)= p(UA) for each 4
in Z and w(U* 4)= o(4).

Proof. Since p is weak-operator continuous on %,, and %, is weak-operator
compact, there is some U in £, such that |o(U)|= |p|. We may assume
lell = 1; and, multiplying U by a suitable scalar of modulus 1, we may assume
that o(U)= 1. The subset of #, at which p takes the value 1 is compact and



12 R. V. KADISON

convex and its extreme points are extreme on %,. We may assume that U is
an extreme point of #,, so that U is a partial isometry with initial projection
E and final projection ¥ such that (I —F)%(I— E)=(0). If P=1—-C,_,,
then, since I — E<C, ,, P<E. Since C, ,C,_,=0 and I—F<C,_ ., I—
—P=0C,_,<I—C, ,<F,s0 that U*UP =P and UU*(I — P)=1— P. Thus
UP+I1—P(=V) and U*I— P)+ P(= W) are isometries (V*V =1 and
W*W =1I) in £ Note that W*V = U.

We may assume that # acting on 5 is the universal normal representation
of #Z. Since A — o(W*AV) assumes its norm, 1, at I, it is a (normal) state
of #, and there is a unit vector z in s# such that o(W*AV)= (4z, 2) for all
A in #. Then p(4)= o(W*WAV*V)= (AV*z, W*z) for all A in #. As
1=p(U)=(UV*z, W*z),and |V*z| <1, |W*z| <1, from the Cauchy-Schwarz
Inequality, |#| = |v| = 1, where u = V*z and v= W*z. Let w(A4) be o(UA4).
Since w takes its norm, 1, at I, w is a (normal) state of #. Since 1 = o(U) =
= o(FU) = (Uu, Fv), we have |Fv| =1= |v|. Thus Fv=v. It follows that
w(U*A)= p(UU*¥A) = o(FA)= (FAu, v) = (du, v) = p(4), for all 4 in Z.

4'3. Corollary. — If p is a normal linear functional of norm 1 on %, then,
in the universal normal representation of # (on ) there are unit vectors u, v
in & such that ¢ = w, |Z.

4'4. Lemma. - If g is a state of the C*-algebra ./ and A4 in &/ is such that
B — o(BA) is Hermitian, then |p(HA)|< |A4|o(H) for each positive H in /.

Proof. Since B —>(BA) is Hermitian, o(B* A) = o(BA) = p(A*B*), for
each B in &/. Thus g(BA?") = p(A**BA") = p(A**B* A") = o(B* A**). With
H positive in o/

lo(HA)| = |o(H*H} A)| < o(A* HA) o(H)t = o(HA?) o(H)?,
and |o(HAY)| <p(HA*"") o(H)}. Hence

lo(HA)| < o(HA o(H) o(HY < ... < o(HA™)* " o(H)H+12"
<(lel 1EI*"|4] o(E)~

and
lo(HA)| < [A] o(H) .

Remark. If B — o(AB) is Hermitian,
le(4H)| = |o(HA*)| < | 4% o(H) = [A] o(H) -

4’5. Lemma. — If o7 is a self-adjoint algebra of operators on the Hilbert
space S and w is a positive linear functional on ./ such that o <.+ for some
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vector z in #, then there is a positive operator 7' in the unit ball o of &'
such that w(4) = w (I"4) = wyi,(A4) for all A in .

Proof. With @(Awz, Bx) defined as w(B* A)
lp(Az, Bz)|?= |w(B*4)|?<w(A*A) w(B*B) < | Az|?|Bx|?.

Thus ¢ is well-defined and is a Hermitian, bilinear form on .«/z bounded by 1.
Hence ¢ has a unique extension to [Ma:], and there is a positive 7" of norm not
exceeding 1 such that (7' Awx, Bx)= @(Ax, Bx) = w(B¥A4). Thus w(d)=
= (T' Az, ) = w,(T' A) for all A in o/. Extending 7" by defining it to be 0
on # — [/z] leaves it positive, of norm not exceeding 1, and leaves the fore-
going equalities unaltered. Since

(I" ABz, Cx) = w(C*AB) = (1" Bz, A*Cx) = (AT’ Bx, Cx)

forall 4, B, Cin &/, T'"A — AT is O on [/z]. As T'is O on ¥ — [Zz], T' 4 —
—AT'=0 for all 4 in «7, and T'eZ,. Thus w(4)=(T'Ax, z)= (AT }z, T'tz)=
= w,t,(A) for all 4 in .

4'6. Theorem (Sakai-Radon-Nikodym). — If w and w, are normal, positive,
linear functionals on a von Neumann algebra # such that w,<w, then there is
a positive operator 7, in the unit ball of # such that we(4)= (T, AT,) for
all 4 in Z.

Proof. Working with £ in its universal normal representation, w = w,|%.
The support F of w.|Z% has range [#'x], and w, has support dominated by E.
Dealing with EZE acting on [#'x], we may assume that w= w.# and
[#' x]= A, the Hilbert space on which # acts. From Lemma 4°5 there is a
positive operator 7T, in the unit ball of #' such that w = w, |%. From Theo-
rem 4'2 (polar decomposition of normal functionals) there is a partial isometry
V' in #' such that .y« |2 is positive and w,, |# = o,y |#'. Since
[% ©)=#, T.o= V' V*T'z. From Lemma 4'4, with H' a positive operator
in ', wppep(H <|T,V' | w(H')<w,(H'). From Lemma 4'5 there is a pos-
itive operator T in the unit ball of # such that o Ry R = wit|A. Hence
(A'z, VT 2 &) = (A'x, Tox) for all A’ in %', and V’*T x= Tyz. Since T r=
= V'V'* Tz, Wyl = 0y | = .

4'7. Lemma. — If # is a von Neumann algebra acting on the Hilbert space
s and H is a positive operator in %, then [#Huw,] contains z, if Nx,= 0, where
N is the projection on the null space of H.

Proof. We may assume that & is the (Abelian) von Neumann algebra gen-
erated by H (and N, and I). Then # ~ C(X) with X extremely disconnected.
Let B,,, be the (spectral) projection (for H) in # corresponding to the largest
clopen set on which the function, f, representing H is not greater than 1/n.
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Then E,,, tends strongly to E, as n— co, and HE,= 0. On the other hand,
since HN = 0, f is 0 on the clopen set corresponding to N, so that N < E,,, for
all n. Thus ¥ = E, and E,,2,—~ E,2,= Nx,=0. f F,=1—E,,,, F,x,— m,.

If K, is the operator in & corresponding to the function which is 1/f on the
clopen set corresponding to ¥, then HK,= F,. Thus K,Hx,— z, and [ZHxz,]

contains z,.

4'8. Theorem. — If w is a normal state of the von Neumann algebra # acting
on the Hilbert space £ and z is a unit separating vector for #, then w = w.|#%,
for some unit vector z.

Proof. If w, is w + w,|%, then w, is separating for # and the representation
@ engendered by 1w, is a faithful mapping of #Z onto the von Neumann algebra
@(#) acting on . Let y, be a cyclic vector for ¢(#£) in # such that
(9(A) Yoy Yo) = wo(4), for all A in Z. As w<w, and w,<w,, there is a unit
vector , in & such that w(4)= (¢(4),, %,), and an operator @(H) in ¢(Z)
such that w,(4)= (p(4)@(H) Yo, p(H)Y,) for all 4 in #, and 0<H<I. If N
is the projection on the null space of H, ¢(N) is the projection on the null space
of p(H), and 0= (p(N)@(H) ¥, p(H)Y) = w,(N). Thus N and @(N) are 0.
From the preceding Lemma, [¢(Z%)¢@(H)y,] contains y, and coincides with .
The mapping Az — @(A)p(H)y, extends to a unitary transformation U of
[#2] onto A" such that UAU-'= ¢(A) for all A in #. If z is U 'x,, then x
is a unit vector, and (A, z)= (UAU 'z, z,)= (zp(A)wo,mo):w(A) for
all 4 in Z.

4'9. Lemma. — If Z is a von Neumann algebra acting on 5# and w,,|Z is
a state of %, then there is a unit vector z in s# such that w,|%Z= w.,|Z.

Proof. If H is a positive operator in %, then 0<w..,(H)= (Hzx, )+
+ (Hy, y) — (Hz, y) — (Hy, »). As w,,|# is a state, (Hw,y)=(y, Hz)=
= (Hy, x), and 2(Hwz, y)<(Hw,x)+ (Hy,y). Thus 4w,,(H)<w..,(H). From
Lemma 4'5, w,,|# = w,|% for some unit vector z.

Employing this Lemma in conjunction with the last paragraph of the proof
of Theorem 4'2, we have:

4'10. Corollary. — If |w.—,|Z| = 1, for some vectors z, y in the Hilbert space
S on which the von Neumann algebra # acts, then there are unit vectors
%, v in J such that w,,|Z= w,.|%.

5. — The type of the commutant.

In this Section the special properties of the trace re-enter the theory for the
purpose of establishing that the commutants of Type I, I or IIT von Neumann
algebras are themselves of Type I, II or III, respectively.
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51. Lemma. — If z, is a cyclic unit trace vector for the von Neumann al-
gebra # acting on # and A’ is a self-adjoint operator in %', there are self-
adjoint operators 4, in £ such that A,z,— A'x,.

Proof. Since z, is cyclic for #, there are operators B, in # such that B,xz, —
—~A'x,. If B is in £, then

(B, B,) = (¥4, B, By) = (%4, BB,2,) — (%, BA'%,) = (4'x,, Bx,).
Moreover

|(By — By)m,|*= ((B, — B,)(B; — Bj)w,, 2,) =

= ((By — BX)(B,— B,)%,, z,) = |(B,— B,,)%,|*—~0 as n, m —oo.

Thus (B:wo) converges to some vector y. From the first computation,
(y, Bx,) = (A'®w,, Bx,) for each B in #. As [Am]=H, Bio,—>y= A'z,.
Hence A,x,—> A'x, where 4,= (B, + BJ).

5'2. Theorem. — If the von Neumann algebra Z acting on the Hilbert space 5#
is finite and has a separating vector and a cyclic vector, then there is a cyclic
trace vector for both Z and #'.

Proof. Let Tr be the (centre-valued) trace on £ and y, a separating vector
for . 1f w(A)= (Tr(A)Y,, %) for all 4 in %, then w is a normal state of Z.
Since y, is separating for #, w is a vector state w, |%# of #, and w is separating
for 2. If 2, is cyclic for Z; [#2,] = H# < [#x,] since [#' z,] < [# x,] = . Thus
[#xy]~ #, and there is a partial isometry V' in %' with initial space [Z#x,]
and final space #. Then w,., |2 = w, |% and [2V'w,]= V'[%x,]= #. We may
assume that z, is cyclic for #Z. As Tr (AB) = Tr (BA), w(4AB) = w(BA), and
7, is a (cyclic) trace vector for #.

We complete the proof by showing that a eyclic trace vector z, for a von Neu-
mann algebra £ is a (cyclie) trace vector for #'. With 4', B’ self-adjoint op-
erators in %', applying Lemma 51, we can find sequences (4,) (B,) of self-
adjoint operators in # such that A,z,—~A'z,, B,x,—>B'x,. Then (A,x,, B.x,)—
— (A'zq, B'my) and (B,x,, A,7,) > (B'x,, A'x,). But

(A,Tyy Baxy) = (Bo Aoy, %) = (A By, @) = (Battyy Aaty).
Thus
(B' A'wy, 3,) = (A'@yy B'wo) = (B' @y, A'w,) = (A’ B'xy, T,) .

The same, now, holds for all 4’, B’ in #’, and %, is a trace vector for #’ (cyclic
since it is separating for £).
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5°3. Theorem. — If the von Neumann algebra # acting on the Hilbert space
S has a cyclic trace vector z,, then £’ is finite. For each A in & there is a unique
A’ in #' such that Azx,= A'z,. The mapping A — A’ is a *anti-isomorphism
of #Z onto #'.

Proof. From the preceding theorem, z, is a cyclic trace vector for Z' so that
#' is finite. If U is a unitary operator in %, wg, |%Z= w, |2#, so that the map-
ping Tx,— T Uz, extends to a unitary operator U’ in #' (noting that [Zx,] =
= [#Ux,] = ), and Ux,= U'z,. Since each operator 4 in Z is a linear com-
bination of (at most, four) unitary operators in £, there is an operator A’ in #’
such that Axy= A'x,. As x, is separating for %', there is just one such A'.
Now (a4 4+ B)x,= ad'x,+ B'x,= (aA'+ B')x, so that 4 — A’ is linear. More-
over, ABx,= AB'x,= B'Azy= B’ A'x,, whence (AB)'= B'A’. By symmetry
A — A’ has a two-sided inverse, so that it is an anti-isomorphism of # onto
#'. Noting, again, that, with H and K self-adjoint operators in &, (Hxz,, Kx,)=
= (KHz,, %) = (HK%,, %) = (Kx,, Hx,) = (Hzx,, Kx,), we see that (Hx,, Kx,)
is real. Thus, if 4 is a self-adjoint operator in # and B is an arbitrary op-
erator in %, (A'Bz,, Bx,) = (A'%,, B* Bx,) = (Ax,, B*Bz,), which is real.
Thus A’ is self-adjoint, and 4 — A’ is a *-anti-isomorphism of # onto £'.

Remark C. In the preceding argument we established that for each 4 in £
there is a unique A’ in &' such that Ax,= 4'x, by appealing to the decompo-
sition of operators in £ as linear combinations of unitary operators in #. Other
routes to this conclusion are available. With H and A positive operators in &

0 <0)“0(H) (HAz,, Amy) = (AH A%, 1) = (HA %y, %) =
= (HYA*HYa,, o) < | 4| (H,, 1) .

From Dye’s lemma, there is a positive operator 4’ in # such that w,., |% =
= 4,,|#. 1t follows that

(TA'xy, A'xwy) = (T, A?wy) = (T Az, Am,) = (A2 T'my, ) = (T'w,, A’y) .

Since z, is cyclic for #, A'?x,= A?x,. Decomposing a self-adjoint operator
as the difference of two positive operators, and each operator as the sum of
a self-adjoint and skew-adjoint operator, we have the desired mapping
(A4 — A’ of Theorem 5°2). In this approach the mapping is seen to be adjoint
preserving.

Remark D. If less emphasis on the use of the trace vector is desired, the Sakai-
Radon-Nikodym theorem can be used. With H' positive in %’ and A positive
in %, w,(H)=(H A, x)<|A*|(H'%, z,), so that there is a positive
A" in #' such that w,, |[Z'= w,,|%# Thus (T'x, A*x) = (T'A'xy, A'wy) =
= (T'z,, A'?x,). As z, is cyclic for #', A2x,= A'?x,, and we proceed as before.
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5'4. Corollary. — If o7 is an Abelian von Neumann algebra acting on the
Hilbert space s# and z, is cyclic for .o/ then .o/ = &7’ (i.e. & is maximal Abelian).

Proof. Since o7 is Abelian, &/ C .&/’, and x, is cyclic for &/’. Thus z, is sep-
arating for .27, and #, is a trace vector for /. Hence ./ and ./’ are anti-iso-
morphie, so that .o/’ is Abelian. Thus &'C&/'= &/; and & = &',

5'5. Corollary. — If the projection E’' with range [#«] in the von Neumann
algebra %’ acting on . is Abelian, then the projection £ with range [#'x]
is Abelian in Z.

Proof. As the commutant, E'#'E’', of ZE’ acting on E'(s#) is Abelian,
E'#'E' is the center of ZE'. Since z is cyclic for E'(5#) under ZE’', EE' with
range [E'% E'xz] has central support E' in ZE'. Thus E'Z'E’' is isomorphic
to E'#'E'E (which is, accordingly, Abelian), and E'#%'E’'E has commutant
E'EZEE' on EE'(#). Now, z is cyclic for BE'(#) under E'#' E' E; so that,
from the preceding corollary, E'#%’'E'E is maximal Abelian. Thus E' EZEE'
is Abelian. But B’ EZEE' = EZEE' and EZEE’ is isomorphic to EZE. Thus
E is Abelian in Z.

5'6. Corollary. — If Z is a finite von Neumann algebra acting on 5 and =
is a vector in s# cyeclic for the projection E’ in #’', then E' is finite in #'.

Proof. The von Neumann algebra ZE’ acting on E’'(5#) is finite with cyeclic
vector v and commutant E'#’'E’. 1f FE is the projection in #ZE' with range
[E'Z# E'x], then EZE'E(= EZE) is finite with cyclic and separating vector =
on E(#) and with commutant E' 2 E'E. As z is cyclic for ZE' in E'(#), F
has central carrier E' in ZF', and E'#'E'E is isomorphic to E'#'E'. But,
from the preceding theorems EZF is anti-isomorphic to E'#'E'E. Thus
E'Z'E'E and E'Z'E' are finite, so that E' is finite in Z'.

5'7. Corollary. — If # is a von Neumann algebra of Type II acting on the
Hilbert space 5#, then %' is of Type II.

Proof. Let E be a finite projection in # with central carrier I. Then EZE
is finite and £’ E is isomorphic to #'. We may assume £ is of Type II,. From
the preceding corollary, each cyeclic projection in £’ is finite. As each projection
in #' is a sum of cyclic projections, #' contains no central portion of Type III.

If #' contains an Abelian projection it contains a cyclic Abelian projection.
In this case, from Corollary 5'5, # contains a cyclic Abelian projection—con-
tradicting the assumption that £ is of Type II. Thus £’ is of Type II.

5'8. Corollary. — If Z is of Type I or of Type III, then %' is of Type I or of
Type III, respectively.

2 — Rendiconti S.I.F. - LX
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Proof. If Z is of Type I it contains a family of cyclic Abelian projections
with central carriers having sum I. From Corollary 55, £’ contains a family
of Abelian projections with the same central carriers. Thus £’ is of Type I.

If # is of Type III, #' has no central portion of Type I, from the foregoing,
nor any of Type II from the preceding corollary. Thus %’ is of Type III.



